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Transition from anticipatory to lag synchronization via complete synchronization
in time-delay systems
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The existence of anticipatory, complete, and lag synchronization in a single system having two different time
delays, that is, feedback delay and coupling delayr, is identified. The transition from anticipatory to
complete synchronization and from complete to lag synchronization as a function of coupling-gelily a
suitable stability condition is discussed. In particular, it is shown that the stability condition is independent of
the delay timesr; and 7,. Consequently, for a fixed set of parameters, all the three types of synchronizations
can be realized. Further, the emergence of exact anticipatory, complete, or lag synchronization from the
desynchronized state via approximate synchronization, when one of the system par@ioggiersaried, is
characterized by a minimum of the similarity function and the transition from on-off intermittency via periodic
structure in the laminar phase distribution.
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[. INTRODUCTION having multiple positive Lyapunov exponents. This increases
o . ecurity by giving rise to much more complex time series,
Synchrqmzaﬂon phhenorrr:en? date r?ack to the perlo?(l O\?vhich are apparently not vulnerable to the unmasking proce-
Huygens in 1665, when he qund that two very weakly g, g generally. Recently chaotic time-delay systems have
coupled pendulum cloqks, han_glng from the same l_)ea_m, bEb'een suggested as good candidates for secure communication
come phase_ sy_nch_ronlzém]_. Smc_e the early identification [28,29, as the time-delay systems are essentially infinite di-
of synchronization in chaotic oscillatofg—4], the phenom-

. A mensional in nature and are described by delay differential
enon has attracted considerable research activity in d'ﬁere'?etquations, and they can admit hyperchaotic attractors with a

large number of positive Lyapunov exponents for suitable
St e DEe "Ronlinearity. Therefore the study of chaos synchronization in
nization phenomenon is of interest not only from a theoretiy g qe|ay systems is of considerable practical significance.
cal point of view but also has potential applications in,vever it should be noted that one has to be cautious due
diverse subjects such as as biological, neurological, Iase{0 the fa’ct that even in time-delay systems with multiple

phemical, electrica], and fluid mechanical systems as well aﬁositive Lyapunov exponents unmasking may be possible. In
in secure communication, cryptography, and s¢bL0l. A articular, this is so if any reconstruction of the dynamics of

recent review on the phenomenon of chaos synchronizatio : : . :

. ; . e system is achieved in some appropriate space even for
can be fo_und_ in Ref11]. In recent years, dn‘ferent kmds of very high-dimensional dynamics as demonstrated by Zhou
synchron!zat!on have been |d_ent|f|ed: Compl(eigdenﬂca} and Lai[30] in the case of the Mackey-Glass equation.
synchronlzatlor{'2,3]l, generalized synchromzqﬂdﬂZ—lq, Time delay is ubiquitous in many physical systems due to
phgse s.y.nchronlzat|o[r615,1.6], Iag‘;]zsygchrlc:)nlzatlor'ﬁ.l7—lldq', the finite switching speed of amplifiers, finite signal propa-
and anticipatory synchronizatid20-22. For a critical dis- 0 time in biological networks, finite chemical reaction
cussion of the interrelationship between various kinds o imes, memory effects, and so ¢@8,29,31,32 In recent
synchronization, we may refer to Ref23,24. Transition 105" considerable work has been carried out on the effect

from one kind of synchronization to another, the coexistenceys i delay in limit cycle oscillator§33,34, time-delay

of different kinds of synchronization in time series, and alsofeedback[SS 36, networks with time-delay couplinf37]
the nature of the transition have also been studied exte o '

. . . Ttc. Recently, we have shown that even a single scalar delay
sively [17-19,25,26in coupled chaotic systems. equation with piecewise-linear function can exhibit hyper-

_One O.f the most Important a_pp||ca_t|ons of chaos synchrogaqtic hehavior even for small values of the time déBs).
nr:zauon IS secure co_mmum(t:)atlor&. Itis _nov:/ aln a%qepted_ fadk s therefore of importance to consider the synchronization
that secure communication based on simple low-dimensiongjs chao5 in such scalar piecewise-linear delay differential

chaﬁtlc systems Oclio?]s not ensure a sufﬁc;)ent level of secgrlt%tems with appropriate delay coupling. Interestingly, in the
as the associated chaotic attractors can be reconstructed Wil cant work we find that in such a coupled system, one can

some effort and the hidden message can be retrieved by : . P
: . entify anticipatory, complete, and lag synchronizations by
eavesdroppef27]. One way to overcome this problem is 0 g hy tyning the second time-delay parameter in the cou-

consider chaos synchronization in high-dimensional systemanng, for a fixed set of system parameters satisfying appro-

priate stability condition. The results have been corroborated

by the nature of similarity functions, and transition behavior
*Electronic address: skumar@cnld.bdu.ac.in characterized by the probability distribution of the laminar
"Electronic address: lakshman@cnld.bdu.ac.in phase during approximate synchronization, which precedes
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exact synchronization when a system parameter is varied. We
also wish to point out that to our knowledge such transitions
between all three types of the above synchronizations have
not been reported in nonhyperchaotic systems and it appears
that the present type of hyperchaotic systems are convenient
tools to realize such transitions by tuning the delay param-
eters suitably.

Specifically, in this paper we will consider chaos synchro-
nization of two single scalar piecewise-linear time-delay sys-
tems studied in Ref$31,38,39 with unidirectional coupling
between them and having two different time delays: one in
the coupling term and the other in the individual systems,
namely, feedback delay. We have identified the stability con-
dition for synchronization following Krasovskii-Lyapunov
theory and demonstrate that there exists a transition between
three different kinds of synchronization, namely, anticipa-
tory, complete, and lag synchronizations, as a function of x
time delay in the coupling. To characterize the existence of FIG. 1. The schematic form of the piecewise-linear funcfiod
anticipatory and lag synchronizations, we have plotted th%iven by Eq.(2).
similarity function S(7). We have also demonstrated that
when the system parametiy is varied, the onset of exact (

f(x)

T3 2 -1 0 1 2 3

anticipatory, complete, and lag synchronization from the de- 0, x<-4/3,
synchronized state is preceded by a region of approximate -1.5%-2, -4/3<x=<-0.8,
synchronized state. We also show that the latter is character- f(x) =3 X ~0.8<x<08 )

ized by a transition from on-off intermittency to a periodic
structure in the laminar phase distribution, as suggested in
the work of Zhanret al.[19] for the case of lag synchroniza-
tion. The plan of the paper is as follows. In Sec. Il, we
introduce the unidirectionally coupled scalar time-delay sysyt js also of interest to consider additional forcing on the right
tem and identify the condition for stability of synchronized 544 side of Eq(1); however, this is not considered here.
states. In Sec. Ill, we point out the existence of anticipatoryrne schematic form of?) is shown in Fig. 1. Recently, we
synchronization when the stren_gth of the coupling delay i, 5ye reported38] that systems of the forrl) exhibit hy-

Ie_ss 'Fhan_ feedt_)ack delay, while in Sec. IV, complete synchroperchaotic behavior for suitable parametric values. For our
nization is realized when the two delays are equal. Lag syngresent study, we find that for the choice of the parameters
chronization is shown to set in when the coupling delay ex-, - 1.0, b=1.2, and7=25.0 with the initial conditionx(t)
ceeds the feedback delay in Sec. V. Finally in Sec. VI, We-0 9 te(-5,0), Eq. (1) exhibits hyperchaos. The corre-

summarize our results. sponding pseudoattractor is shown in Fig. 2. The hypercha-
otic nature of Eq(1) is confirmed by the existence of mul-
tiple positive Lyapunov exponents. The first ten maximal
Lyapunov exponents for the parameters1.0, b=1.2, x(t)

-15+2, 0.8<x=4/3,
o, x> 4/3.

\

Il. PIECEWISE LINEAR TIME-DELAY SYSTEM AND
STABILITY CONDITION FOR CHAQOS
SYNCHRONIZATION

1

At first, we will introduce the single scalar time-delay
system with piecewise linearity and bring out its hypercha- 097
otic nature for suitable values of the system parameters. Thel
the unidirectional delay coupling is introduced between two
scalar systems and the stability condition for chaos synchro-

nization is derived. ® 0857
¥ os}
A. The scalar delay system 075 L
We consider the following first-order delay differential
equation introduced by Lu and H&9] and discussed in 0.7y
detail by Thangavett al. [31]:
0.65 : : : . : .

X(t) = — ax(t) + bf(x(t - 7)), (1) 065 07 075 08 © 085 09 095 1
wherea andb are parameters;is the time delay, andlis an FIG. 2. The hyperchaotic attractor of the systé¢i) for the
odd piecewise-linear function defined as parameter valuea=1.0,b=1.2, andr=25.0.
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0.06 - ' - - - Lyapunov functional approad#0,41], we define a positive
definite Lyapunov functional of the form
0.04 | 0
1.2 2
V() =-A+pu A“(t+ 0)do, (7)
0.02 2 o
&g ol where u is an arbitrary positive parametgt,>0. Note that
V(t) approaches zero as— 0.
o0z | To estimate a sufficient condition for the stability of the
e solution A=0, we require the derivative of the functional
0.04 L V(t) along the trajectory of Eq6),
: ' ' ' ' dv 2 , 2 2
0 5 10 15 20 25 30 it =—aA“+ b, (x(t - 72))AATl + uAc - ,uATl, (8)
T

FIG. 3. The first ten maximal Lyapunov exponenisa, of the 15 pe negative. The above equation can be rewritten as
scalar time-delay equatiof8a) for the parameter values=1.0, b

=1.2,7€(2,29. =

V_ _ 2

=0.9,te (-5,0 as a function of time delay is shown in where X=A. /A, T={[(a= )/ w]~[bof (xe(t= 1)) w]X
Egmfe:l[vzhgl)a:h are evaluated using the procedure suggested tlyxz}. In order }to show thatlVV/dt< 0 for all A andA ; and so
for all X, it is sufficient to show thal',,;,> 0. One can easily
check that the absolute minimum of occurs at X
=(L/2m)bof ' (xy(t=70))  with  Tpin=[4u(a-p) =b3f (xq(t

B. Coupled system and the stability condition - )
-1,))?]/4u?. Consequently, we have the condition for stabil-

Now let us consider the following unidirectionally

ity as
coupled drivex;(t) and responsg,(t) systems with two dif- y
ferent time delays; and , as feedback and coupling time . b_gf,( (t= )2+ = D) (10)
delays, respectively, a 4u X))y =)
Xq(t) = —axy(t) + by f (x4 (t = 7)), (38  Again ®(u) as a function ofu for a givenf’(x) has an

absolute minimum atu=[|b,f’(x,(t—7))[1/2 with ®,
Xz(t) == aXZ(t) + bzf(Xz(t - Tl)) + bgf(Xl(t - 7'2)), (3b) = |b2f’(X1(t— 7'2))| . Sinced = (I)min: |b2f'(X1(t— 7'2))|, from the
inequality (10), it turns out that the sufficient condition for

whereb;,, b,, andb; are constantsa>0, andf(x) is of the asymptotic stability is

same form as in Eq2).

Now we can deduce the stability condition for synchroni- a> [bof’ (xy(t = 7)) (11
zation of the two time-delay systems E@8a) and (3b) in
the presence of the delay couplibgf(x;(t—7)). The time
evolution of the difference system with the state variable
=X1,-, =Xz (Which corresponds to anticipatory synchroniza-
tion when 7, < 7, identical synchronization fot,=7;, and 15, 0.8= x| =< 4
lag synchronization whem,> ), where X, _, =X (t=(7, ' qt=m))| =97 AT g
-7)), can be written for small values &f by using the 1.0, |x]<0.8
evolution equation$3) as ! o

along with the conditiori5) on the parametels;, b,, andbs.
Now from the form of the piecewise linear functid(x)
given by Eq.(2), we have

(12)

, Note that the regiofx,| >4/3 is outside the dynamics of the
A=-aA +(by+by—b)f(x(t— 7)) present systerfsee Eq(2)]. Consequently the stability con-
, _ A dition (11) becomesa> 1.5b,| > |b,| along with the paramet-
0N a(t= ) As, A=A 7). @ Yic restiction b,=b,+bs.
In order to study the stability of the synchronization mani-  Thus one can taka>|b| as a less stringent condition for

fold, we choose the parametric condition (11) to be valid, while
b, = b, + bs, (5) a>1.5b,), (13
so that the evolution equation for the difference system @S the most general condition specified K1) for
becomes asymptotic stability of the synchronized state 0. The con-
dition (13) indeed corresponds to the stability condition for
A=-aA + b,f’ (X (t = 7))A,. . (6) exact anticipatory, identical, as well as lag synchronizations
1

for suitable values of the coupling delay. It may also be
The synchronization manifold is locally attracting if the ori- noted that the stability conditio(i.3) is independent of the
gin of this equation is stable. Following the Krasovskii- both the delay parametergand,. In the following, we will
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FIG. 4. Exact anticipatory synchronization for the parameter vadae®16,b,;=0.2,b,=0.1,b3=0.1, 74=25.0, andr,=20.0.(a) Time

series plot ofk;(t) andx,(t); (b) synchronization manifold betwee(t) andx,(t—7), 7=75— 7. The responsg,(t) anticipates the drive;(t)
with a time shift of 7=5.0.

demonstrate the transition from anticipatory to lag synchrox;(t)=x,(t), as in the case of complete synchronization, the
nization via complete synchronization as the coupling delaimilarity function reaches a minimu®(7)=0 for r=0. But
7, is varied fromr, <7, to 7,> 7, subject to the stability for the case of a nonzero value of time shiftif S(7)=0,
condition (13) with the parametric restrictiom;=b,+bs.  then there exists a time shiftbetween the two signabs(t)
However, we also point out from detailed numerical analysisgng X,(t) such thatx,(t+7)=x,(t), demonstrating lag syn-
that when the less general condition [b5>a>|b,| is sat-  cnhronization.
isfied, approximate synchronizatiganticipatory, complete, In the present study, we have used the same similarity
lag) occurs. function S(7) to characterize anticipatory synchronization
with a negative time shift ~instead of the positive time shift
IIl. ANTICIPATORY SYNCHRONIZATION FOR ~ 7,< 7 7in Eq. (14). In other words, one may define the similarity

. . . N ~ function for anticipatory synchronization as
To start with, we first consider the transition to anticipa-

tory synchronization in the coupled syste3). We have (Xt = D) = x() %
fixed the value of the feedback time delay at 7,=25.0 §a(7’) = [OG(0))YO()) ]2 (15
while the other parameters are fixedaxs0.16,b,=0.2, b, BT

=0.1,b3=0.1 and the time delay in the couplingis treated  Then a minimum ofS,(7), that is, S,(1)=0, indicates that
as the control parameter. With the above mentioned stabilityhere exists a time shift~between the two signalg (t) and

condition(13) and with the coupling delay, being less than %(t) such thatx,(t-7)=x,(t), demonstrating anticipatory

the feedback delay,, one can observe the transition 0 an- gy nchronization. Figure 5 shows the similarity funct@yir)
ticipatory synchronization. The time trajectory plot is shown

in Fig. 4(a) depicting anticipatory synchronization, for the ol

specific value ofr,=20.0 with the anticipating time equal to 0.0002
the difference between feedback and coupling delays, that is 00001 —2
T=7,—71. The time-shifted plot Fig. @), x,(t—7) vs xy(1), 0.08

shows a concentrated diagonal line confirming the existence 0.0 —4
of anticipatory synchronizatiofwe may note here that in all | -0.0001

) C e .y 0.06
our numerical studies in this paper we leave out a sufficiently 5

large number of transients, before presenting our figures
Some time ago, Rosenbulet al.[15] have introduced the 0.04

notion of the similarity function§(7) for characterizing the

lag synchronization as a time-averaged difference betweet

the variablesx; andx, (with mean values being subtracjed 0.02

taken with the time shift,

At + 1) = x, (D)D) 020 2 24 26 2 30
S0 = foROBOE 1 g

] ) FIG. 5. Similarity functionS,(7) for different values ob,; the
where(x) means the time average over the variabléf the  ther system parameters a0.16,b;=0.2, andr;=25.0.(Curve

signalsx,(t) and x,(t) are independent, the difference be- 1, b,=0.18, b;=0.02; curve 2,b,=0.16, b;=0.04; curve 3,b,
tween them is of the same order as the signals themselves.40.15,b;=0.05; curve 4p,=0.1,b3=0.1)
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FIG. 6. (a) The time seriex;(t) —X,(t—7) for b,=0.17 andb;=0.03 with all other parameters as in Fig(sb that the stability condition
is violated for anticipatory synchronizatipr{b) Projection ofx;(t) vs x,(t— 7). (c) The statistical distribution of the laminar phase satisfying
-3/2 power law scaling.

as a function of the coupling delas for four different val-  which can be tuned suitably to satisfy experimental situa-
ues ofb,, the parameter whose value determines the stabilityions.

condition given by Eq(13), while satisfying the parametric Next, we show that the emergence of exact anticipatory
conditionb,=b,+b;. Curves 1 and 2 are plotted for the val- Synchronization is preceded by a region of approximate an-
ues of b,=0.18 (>a=0.16>a/1.5 and b,=0.16 (=a tip!patory synchro_nizatiqn, which is ass'oci.ated with thg tran-
>al1.5), respectively, where the minimum values ®{7)  Sition from on-off intermittency to a periodic structure in the
are found to be greater than zero, indicating that there is n{Minar phase distributioi.9] as a function of the parameter
exact time shift between the two signalgt) andx,(t). Note ~ 22: First we choose the value df, as b,=0.17 (with by

that in the both cases the stringent stability conditi®6) =02 aTdtPB-?ftog' f'::bqve tl,;e ilg)lue cﬁ-ﬁ).lG,t;uclh thattthe
and the less stringent conditi@> |b,| are violated. Curve 3 general stability criterion E13) as well as the less strin-

o t ditiona>|b iolated. Fi ® sh th
corresponds to the value bf=0.15(which is less tham but gent conditiona=|by| are violate igure @ shows the

N ) difference ofx;(t)—X,(t—7) vs t, exhibiting typical features
greater thara/1.5), where the minimum value 08(7) IS of on_off intermittency[42,43 with the “off’ state near the

almost zero, but not exactly zefas may be seen in the inset |minar phase and the “on” state showing a random burst. In
of Fig. 5), indicating an approximate anticipatory synchroni- Fig. g(b) x,(t) is plotted againsk,(t—17), where the distribu-
zationx,(t) =x,(t- 7). On the other hand the curve 4 is plot- tjon is scattered around the diagonal. To analyze the statisti-
ted for the value ob,=0.1(<a/1.5), satisfying the general cal features associated with the irregular motion, we calcu-
stability criterion Eq.(13). It shows that the minimum of lated the distribution of laminar phasdgt) with amplitude
Si(7)=0, thereby indicating that there exists an exact timdess than a threshold value=0.005 as was done in the sta-
shift between the two signals demonstrating anticipatory syntistical analysis of intermittency42,43, where the power
chronization. The anticipating time is found to be equal tolaw behavior of the mean laminar length is calculated as a
the difference between the coupling and feedback delajunction of the control parameter. A universal asymptotic
times, that is,r= ,— 7. Note thatS,(7)=0 for all values of -3/2 power law distribution is observed in Fig.c§ which

7,< 71, indicating anticipatory synchronization for a range of is quite typical for on-off intermittency.

delay coupling. A further significance is that the anticipating Now, we choose the value b5=0.15, below the value of
time 7=|m,— 7| is an adjustable quantity as long as<r;, = a=0.16 so that the less stringent conditmn |b,| is satisfied
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FIG. 7. (a) The time seriex;(t) —x,(t—7) for b,=0.15 andb;=0.05 with all other parameters fixed as in Fig:sé that the less stringent
conditiona> |b,| is satisfied while Eq(13) is violated. (b) Projection ofx,(t) vs x,(t—17). (c) The statistical distribution of the laminar phase
showing a periodic structure.

while the general stability criterion Eq13) is violated and gence of this approximate anticipatory synchronization from
we carry out the same analysis as above. In F{@),the the desynchronized state is characterized by the transition of
difference ofx,(t) —x,(t— 7) is plotted against timg whichis  on-off intermittency to a periodic structure in the laminar
more regular and is much smaller in amplitude but not exphase distribution.

actly zero, thereby implying an approximate anticipatory
synchronizationx;(t) = x;(t— 7). Figure 1b) shows the plot
of x,(t) vs x,(t—7), where the distribution is localized en-
tirely on the diagonal, but not sharply on it. Earlier we noted Complete synchronization follows anticipatory synchroni-
that for this case the minimum of the similarity function zation as the value of the coupling time delaybecomes
S,(7) (curve 3, inset of Fig. bis nearly zero, but not exactly equal to the feedback time delay, when 7, is increased
zero. The distribution of the laminar phaaét) is plotted in ~ from a lower value. Withr,= 7, the same stability criterion
Fig. 7(c) as in Fig. &c). It shows a periodic structure in the EQg. (13) holds good for this case of complete synchroniza-
distribution of the laminar phase, where the peaks occur agion as well, with the same conditidn =b,+b;. Figure &a)
proximately att=nT, n=1,2,...,whereT is of the order of ~Shows the time trajectory plot of(t) andx,(t), exhibiting

the period of the lowest periodic orbit of the uncoupled sys-synchronized evolution between them, which is also con-
tem (1). It should be remembered that the periodic behaviofirmed by the entirely localized diagonal line xfit) vs x,(t)

is associated with the statistical analysis, while the signalgs shown in Fig. @). As in the case of anticipatory synchro-
remain chaotic. Finally for the cadp=0.1(<a/1.5), which  nization, we have found that the transition to complete syn-
satisfies the stringent stability criteridfi3), and where the chronization precedes a region of approximate complete syn-
similarity function vanishes exactlgurve 4 in Fig. 3, exact ~ chronization[x,(t) =x,(t)] from the desynchronized state as
anticipatory synchronization occurs as confirmed in Fig. 4the parametel, varies. Here also we have identified that the
Thus we find that the transition to exact anticipatory syn-emergence of approximate complete synchronization for the
chronization precedes a region of approximate anticipatorgaser,=r; is associated with a transition from on-off inter-
synchronization from the desynchronized state as the paranmittency to a periodic structure in the laminar phase distri-
eterb, changes. We have also demonstrated that the emepution as a function of the parametes. In the next section

IV. COMPLETE SYNCHRONIZATION FOR m,=7;
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FIG. 8. Exact complete synchronization for the parameter vadwe®.16,b;=0.2,b,=0.1, b3=0.1, ;=25.0, andr,=25.0. Here the

general stability criterior{13) is satisfied.(a) Time series plot ok;(t) andx,(t) and(b) synchronization manifold betweeq(t) and x,(t).
The response,(t) follows identically the drivex;(t) without any time shift.

we will discuss the existence of lag synchronization for val-ity function S(7) for the values 0b,=0.18 and 0.16, respec-
ues ofr, greater thanr. tively. The minimum of the similarity functiori§(7) occurs
for values ofS(7) >0 and hence there is a lack of exact lag
time between the drive and response signals indicating asyn-
chronization. Curve 3 corresponds to the valuebpf0.15
For coupling delayr, greater than feedback delay, we (which is less tham l_)ut greater thama/1.5), where the mini-
. - L mum values of§(7) is almost zero, but not exactly zetas
find that the systeni3) exhibits exact lag synchronization : - .
) o X - o may be seen in the inset of Fig.)1&o thatx;(t) = X,(t+ 7).

provided one satisfies the stringent stability criterids3), _ .
with the lag time equal to the difference between the cou—HOWe\.’er’ for t_he va_llu_e 0b3_0'1’. for which the gener_al

i d feedback delay fi Figureosh the plot of condition (13) is satisfied, the minimum of the similarity
pling and feedback delay imes. Figu OWS € plot ol ¢nction becomes exactly zefourve 4 indicating that there
X,(t) andxy(t) vs timet, where the response system lags thejg 5 exact time shiftFig. 9 between drive and response
state of the drive system with constant lag tinve| 7,— 7. signals x,(t) and x,(t), respectively, confirming the occur-
Figure 9b) shows the time-shifted plot of;(t) andx,(t+ 7).

. - ! ! ' rence of lag synchronization.
However, in the region of less stringent stability condition, e have also confirmed that as in the case of anticipatory

1.5b,| <a<|b,|, approximate lag synchronization occurs assynchronization, when the parametgrvaries, the onset of

in the cases of anticipatory and complete synchronizations.exact lag synchronization is preceded by a region of approxi-
We have also calculated the similarity functi§itr) from  mate lag synchronization, which is characterized by a transi-

Eq. (14) to characterize the lag synchronization. Figure 10tion from on-off intermittency of the desynchronized state to

shows the similarity functior§(7) vs coupling delayr, for a periodic structure in the laminar phase distribution. For the

four different values ob,. Curves 1 and 2 show the similar- value ofb,=0.17[which violates the stability conditio(iL3)

V. LAG SYNCHRONIZATION FOR 7> 7

1 . i ; . 1
drive’

095 response 1 095 |

0.9 09 1
\;a 0.85 | c 0.85 |
S o8t A os |
w4

0.75 | 0.75 |

07 07}

0.65

' ' ' ; 0.65 —_—
14100 14150 14200 14250 14300 14350 065 07 075 08 085 09 095 1
@ f () x(0)

FIG. 9. Exact lag synchronization for the parameter vake8.16,b;=0.2,b,=0.1,b3=0.1, 7;=25.0, andr»,=30.0. Here the general

stability criterion(13) is satisfied(a) Time series plot ok;(t) andx,(t), and(b) synchronization manifold betweeq(t) andx,(t+7). The
response,(t) lags the drivex,(t) with a time shift of 7=5.0.
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0.1

behavior as shown in Fig. 1d). In order to show that there
is a transition from on-off intermittency to periodic behavior
in the laminar phase distribution corresponding to approxi-
mate lag synchronization, we have changed the value, of
from 0.17 to 0.15[so that the less stringent conditian

0.08 -

0.06 - >|b,| is satisfied but not the general conditioh3)], and
e examined the nature of laminar phase distributig). The
= difference betweemn;(t) andx,(t+7) is shown as a function

0.04 +

of time t in Fig. 12a), where there is only a laminar phase
present for the threshold value=0.002 without any inter-
0.02 - ] mittent burst. The corresponding laminar phase distribution
A(t) is again characterized by a periodic structure as shown
in Fig. 12c). As in the case of approximate anticipatory
(’2;) > o % % 20 synchronization, here also the peaks occur approximately at
T, t=nT, n=1,2,...,whereT is roughly of the order of the
FIG. 10. Similarity functionS(7) for different values oby; the ~ Period of the lowest periodic orbit of the uncoupled system
other system parameters ae0.16,b,=0.2, andr;=25.0.(curve  (1)- The time-shifted plok,(t) vs x,(t+7) is shown in Fig.
1, b,=0.18, b3=0.02; curve 2,b,=0.16, b3=0.04; curve 3,b, 12(b), where the distribution is concentrated along but not
=0.15,b3=0.05; and curve 4,=0.1,b3=0.1) exactly on the diagonal line confirming the onset of approxi-
mate lag synchronization. As noted previously, for this case
as well as the less stringent conditian>|b,|], Fig. 14a)  the minimum of the similarity functior§(7) is nearly zero
shows the difference ofy(t) —x,(t+7) vs timet, exhibiting a  but not exactly zerdcurve 3, inset of Fig. 10 Finally for
typical on-off intermittency. In Fig. 1(b), x,(t) is plotted b,=0.1, which satisfies the general stability criteriti8),
againstx,(t+7), where the distribution is not concentrated we have exact lag synchronization as demonstrated in Figs. 9
along the diagonal. In Fig. 14), the laminar phase distribu- and 10. Thus we find that as the paramdigrvaries the
tion A(t) is characterized by an exponential —3/2 power lawtransition to exact lag synchronization is preceded by a re-

0.08

0.02

Xy (t)-Xz( t‘\vt)

0 2000 4000 6000 8000 10000 12000 14000 16000
(a) t

1 1

095 |

09 | 0.1}
= 085 o I
\J% = 0.01
e 0'8 L

0.75 | 0.001 §

0.7 |

0.0001 .
0.65 10 100 1000 10000

065 07 075 08 08 09 095 1
(b} x,(0) (c) t

FIG. 11. (a) The time series;(t) —x,(t+7) for b,=0.17 andb3=0.03 with all other parameters as in Fig(s® that the stability condition
is violated. (b) Projection ofx;(t) vs x,(t+ 7). (c) The statistical distribution of laminar phase satisfying —3/2 power law scaling.
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0.08
~ 002}
l_)
£ o
£
o004 f
0.1 : . . . . . .
@ 0 2000 4000 6000 8000 10000 12000 14000 16000
a t
L " 0.25
0.95 |
0.2 r 1
09 |
0.15 1
c 085 | 1 e
& =
%08 | ] 0.1 t .
075 } 0.05 | |
0.7}
O . L
0.65 . . : . . . 0 50 100 150 200
065 0.7 075 08 08 09 095 1
(b) x(0 (c) t

FIG. 12. (a) The time series;(t) —x,(t+ 7) for b,=0.15 andb;=0.05 so that the less stringent conditar |b,| is satisfied whilg13) is
violated. (b) Projection ofx;(t) vs x,(t+7). (c) The statistical distribution of the laminar phase showing periodic structure.

gion of approximate lag synchronization from the desynchrothe similarity functionS,(7) attains the value zero for all
nized state, where the latter is characterized by the transitiovalues ofr, < r;, indicating that exact anticipatory synchro-
from on-off intermittency to periodic structure in the laminar njzation exists for a range of coupling delaysbelow ;.

phase distribution. However, for approximate anticipatory synchronizatidm
the region 1.8,|>a>|b,|) the minimum of the similarity
VI. SUMMARY AND CONCLUSION function takes the valu&,(7) =0, but not exactly zero, for

In this paper, we have shown the existence of transitiof2 < 71 Similarly, lag synchronization also occurs for a range
from anticipatory synchronization to lag synchronization©f delay couplingsr, abover,. Another interesting aspect is
through complete synchronization in a single system of twdhat both the anticipating and lag time can be tuned to any
coupled time-delay piecewise-linear oscillators with suitabled€Sired value by changing the value of the coupling dejay
stability condition and with the second time delayin the ~ Consequently, coupled time-delay systems of the type dis-
coupling as the only control parameter with all the Othercus:;ed in this paper have con5|d_erable physical relevance,
parameters being kept fixed. We have also plotted Corre_partmglarly for secure commumcaupn purposes. We are now
sponding similarity functions to characterize both the antici-nvestigating the existence of similar phenomena in other
patory and lag synchronization as well as complete synchrd?i€cewise-linear time-delay systems, including the time-
nization. Further, when the parametsrvaries, we find that delay Chua and _Mura_ll-Lakshm_an-Chua electronic circuits,
the transition to exact anticipatory, complete, or lag synchroth€ results of which will be published elsewhere.
nization is preceded by a region of approximate anticipatory,
complete, or lag synchronization from the desynchronized

state, where the region of approximate synchronization is ACKNOWLEDGMENT
characterized by the transition from on-off intermittency to
periodic structure in the laminar phase distribution. This work has been supported by a Department of Science

Further, we have observed that in the region where thand Technology, Government of India sponsored research
stringent stability conditiori13) is satisfied, the minimum of project.
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