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The existence of anticipatory, complete, and lag synchronization in a single system having two different time
delays, that is, feedback delayt1 and coupling delayt2, is identified. The transition from anticipatory to
complete synchronization and from complete to lag synchronization as a function of coupling delayt2 with a
suitable stability condition is discussed. In particular, it is shown that the stability condition is independent of
the delay timest1 andt2. Consequently, for a fixed set of parameters, all the three types of synchronizations
can be realized. Further, the emergence of exact anticipatory, complete, or lag synchronization from the
desynchronized state via approximate synchronization, when one of the system parameterssb2d is varied, is
characterized by a minimum of the similarity function and the transition from on-off intermittency via periodic
structure in the laminar phase distribution.

DOI: 10.1103/PhysRevE.71.016211 PACS numberssd: 05.45.Xt, 05.45.Pq

I. INTRODUCTION

Synchronization phenomena date back to the period of
Huygens in 1665, when he found that two very weakly
coupled pendulum clocks, hanging from the same beam, be-
come phase synchronizedf1g. Since the early identification
of synchronization in chaotic oscillatorsf2–4g, the phenom-
enon has attracted considerable research activity in different
areas of sciencef1,5,6g and several generalizations and inter-
esting applications have been developed. The chaos synchro-
nization phenomenon is of interest not only from a theoreti-
cal point of view but also has potential applications in
diverse subjects such as as biological, neurological, laser,
chemical, electrical, and fluid mechanical systems as well as
in secure communication, cryptography, and so onf1–10g. A
recent review on the phenomenon of chaos synchronization
can be found in Ref.f11g. In recent years, different kinds of
synchronization have been identified: Completesor identicald
synchronizationf2,3g, generalized synchronizationf12–14g,
phase synchronizationf15,16g, lag synchronizationf17–19g,
and anticipatory synchronizationf20–22g. For a critical dis-
cussion of the interrelationship between various kinds of
synchronization, we may refer to Refs.f23,24g. Transition
from one kind of synchronization to another, the coexistence
of different kinds of synchronization in time series, and also
the nature of the transition have also been studied exten-
sively f17–19,25,26g in coupled chaotic systems.

One of the most important applications of chaos synchro-
nization is secure communication. It is now an accepted fact
that secure communication based on simple low-dimensional
chaotic systems does not ensure a sufficient level of security,
as the associated chaotic attractors can be reconstructed with
some effort and the hidden message can be retrieved by an
eavesdropperf27g. One way to overcome this problem is to
consider chaos synchronization in high-dimensional systems

having multiple positive Lyapunov exponents. This increases
security by giving rise to much more complex time series,
which are apparently not vulnerable to the unmasking proce-
dures generally. Recently chaotic time-delay systems have
been suggested as good candidates for secure communication
f28,29g, as the time-delay systems are essentially infinite di-
mensional in nature and are described by delay differential
equations, and they can admit hyperchaotic attractors with a
large number of positive Lyapunov exponents for suitable
nonlinearity. Therefore the study of chaos synchronization in
time-delay systems is of considerable practical significance.
However, it should be noted that one has to be cautious due
to the fact that even in time-delay systems with multiple
positive Lyapunov exponents unmasking may be possible. In
particular, this is so if any reconstruction of the dynamics of
the system is achieved in some appropriate space even for
very high-dimensional dynamics as demonstrated by Zhou
and Lai f30g in the case of the Mackey-Glass equation.

Time delay is ubiquitous in many physical systems due to
the finite switching speed of amplifiers, finite signal propa-
gation time in biological networks, finite chemical reaction
times, memory effects, and so onf28,29,31,32g. In recent
times, considerable work has been carried out on the effect
of time delay in limit cycle oscillatorsf33,34g, time-delay
feedbackf35,36g, networks with time-delay couplingf37g,
etc. Recently, we have shown that even a single scalar delay
equation with piecewise-linear function can exhibit hyper-
chaotic behavior even for small values of the time delayf38g.
It is therefore of importance to consider the synchronization
of chaos in such scalar piecewise-linear delay differential
systems with appropriate delay coupling. Interestingly, in the
present work we find that in such a coupled system, one can
identify anticipatory, complete, and lag synchronizations by
simply tuning the second time-delay parameter in the cou-
pling, for a fixed set of system parameters satisfying appro-
priate stability condition. The results have been corroborated
by the nature of similarity functions, and transition behavior
characterized by the probability distribution of the laminar
phase during approximate synchronization, which precedes
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exact synchronization when a system parameter is varied. We
also wish to point out that to our knowledge such transitions
between all three types of the above synchronizations have
not been reported in nonhyperchaotic systems and it appears
that the present type of hyperchaotic systems are convenient
tools to realize such transitions by tuning the delay param-
eters suitably.

Specifically, in this paper we will consider chaos synchro-
nization of two single scalar piecewise-linear time-delay sys-
tems studied in Refs.f31,38,39g with unidirectional coupling
between them and having two different time delays: one in
the coupling term and the other in the individual systems,
namely, feedback delay. We have identified the stability con-
dition for synchronization following Krasovskii-Lyapunov
theory and demonstrate that there exists a transition between
three different kinds of synchronization, namely, anticipa-
tory, complete, and lag synchronizations, as a function of
time delay in the coupling. To characterize the existence of
anticipatory and lag synchronizations, we have plotted the
similarity function Sstd. We have also demonstrated that
when the system parameterb2 is varied, the onset of exact
anticipatory, complete, and lag synchronization from the de-
synchronized state is preceded by a region of approximate
synchronized state. We also show that the latter is character-
ized by a transition from on-off intermittency to a periodic
structure in the laminar phase distribution, as suggested in
the work of Zhanet al. f19g for the case of lag synchroniza-
tion. The plan of the paper is as follows. In Sec. II, we
introduce the unidirectionally coupled scalar time-delay sys-
tem and identify the condition for stability of synchronized
states. In Sec. III, we point out the existence of anticipatory
synchronization when the strength of the coupling delay is
less than feedback delay, while in Sec. IV, complete synchro-
nization is realized when the two delays are equal. Lag syn-
chronization is shown to set in when the coupling delay ex-
ceeds the feedback delay in Sec. V. Finally in Sec. VI, we
summarize our results.

II. PIECEWISE LINEAR TIME-DELAY SYSTEM AND
STABILITY CONDITION FOR CHAOS

SYNCHRONIZATION

At first, we will introduce the single scalar time-delay
system with piecewise linearity and bring out its hypercha-
otic nature for suitable values of the system parameters. Then
the unidirectional delay coupling is introduced between two
scalar systems and the stability condition for chaos synchro-
nization is derived.

A. The scalar delay system

We consider the following first-order delay differential
equation introduced by Lu and Hef39g and discussed in
detail by Thangavelet al. f31g:

ẋstd = − axstd + bf„xst − td…, s1d

wherea andb are parameters,t is the time delay, andf is an
odd piecewise-linear function defined as

fsxd =5
0, x ø − 4/3,

− 1.5x − 2, − 4/3, x ø − 0.8,

x, − 0.8, x ø 0.8,

− 1.5x + 2, 0.8, x ø 4/3,

0, x . 4/3.
6 s2d

It is also of interest to consider additional forcing on the right
hand side of Eq.s1d; however, this is not considered here.
The schematic form ofs2d is shown in Fig. 1. Recently, we
have reportedf38g that systems of the forms1d exhibit hy-
perchaotic behavior for suitable parametric values. For our
present study, we find that for the choice of the parameters
a=1.0, b=1.2, andt=25.0 with the initial conditionxstd
=0.9, tP s−5,0d, Eq. s1d exhibits hyperchaos. The corre-
sponding pseudoattractor is shown in Fig. 2. The hypercha-
otic nature of Eq.s1d is confirmed by the existence of mul-
tiple positive Lyapunov exponents. The first ten maximal
Lyapunov exponents for the parametersa=1.0, b=1.2, xstd

FIG. 1. The schematic form of the piecewise-linear functionfsxd
given by Eq.s2d.

FIG. 2. The hyperchaotic attractor of the systems1d for the
parameter valuesa=1.0, b=1.2, andt=25.0.
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=0.9, tP s−5,0d as a function of time delayt is shown in
Fig. 3, which are evaluated using the procedure suggested by
Farmerf29g.

B. Coupled system and the stability condition

Now let us consider the following unidirectionally
coupled drivex1std and responsex2std systems with two dif-
ferent time delayst1 and t2 as feedback and coupling time
delays, respectively,

ẋ1std = − ax1std + b1f„x1st − t1d…, s3ad

ẋ2std = − ax2std + b2f„x2st − t1d… + b3f„x1st − t2d…, s3bd

whereb1, b2, andb3 are constants,a.0, and fsxd is of the
same form as in Eq.s2d.

Now we can deduce the stability condition for synchroni-
zation of the two time-delay systems Eqs.s3ad and s3bd in
the presence of the delay couplingb3f(x1st−t2d). The time
evolution of the difference system with the state variableD
=x1t2−t1

−x2 swhich corresponds to anticipatory synchroniza-
tion whent2,t1, identical synchronization fort2=t1, and
lag synchronization whent2.t1d, where x1t2−t1

=x1(t−st2

−t1d), can be written for small values ofD by using the
evolution equationss3d as

Ḋ = − aD + sb2 + b3 − b1df„x1st − t2d…

+ b2f8„x1st − t2d…Dt1
, Dt = Dst − td. s4d

In order to study the stability of the synchronization mani-
fold, we choose the parametric condition

b1 = b2 + b3, s5d

so that the evolution equation for the difference systemD
becomes

Ḋ = − aD + b2f8„x1st − t2d…Dt1
. s6d

The synchronization manifold is locally attracting if the ori-
gin of this equation is stable. Following the Krasovskii-

Lyapunov functional approachf40,41g, we define a positive
definite Lyapunov functional of the form

Vstd =
1

2
D2 + mE

−t1

0

D2st + uddu, s7d

wherem is an arbitrary positive parameter,m.0. Note that
Vstd approaches zero asD→0.

To estimate a sufficient condition for the stability of the
solution D=0, we require the derivative of the functional
Vstd along the trajectory of Eq.s6d,

dV

dt
= − aD2 + b2f8„x1st − t2d…DDt1

+ mD2 − mDt1

2 , s8d

to be negative. The above equation can be rewritten as

dV

dt
= − mD2GsX,md, s9d

where X=Dt1
/D, G=hfsa−md /mg−fb2f8(x1st−t2d) /mgX

+X2j. In order to show thatdV/dt,0 for all D andDt and so
for all X, it is sufficient to show thatGmin.0. One can easily
check that the absolute minimum ofG occurs at X
=s1/2mdb2f8(x1st−t2d) with Gmin=f4msa−md−b2

2f8(x1st
−t2d)2g /4m2. Consequently, we have the condition for stabil-
ity as

a .
b2

2

4m
f8„x1st − t2d…2 + m = Fsmd. s10d

Again Fsmd as a function ofm for a given f8sxd has an
absolute minimum atm=fub2f8(x1st−t2d)ug /2 with Fmin

= ub2f8(x1st−t2d)u. SinceFùFmin= ub2f8(x1st−t2d)u, from the
inequality s10d, it turns out that the sufficient condition for
asymptotic stability is

a . ub2f8„x1st − t2d…u s11d

along with the conditions5d on the parametersb1, b2, andb3.
Now from the form of the piecewise linear functionfsxd

given by Eq.s2d, we have

uf8„x1st − t2d…u = 51.5, 0.8ø ux1u ø
4

3
,

1.0, ux1u , 0.8.
6 s12d

Note that the regionux1u.4/3 is outside the dynamics of the
present systemfsee Eq.s2dg. Consequently the stability con-
dition s11d becomesa.1.5ub2u. ub2u along with the paramet-
ric restrictionb1=b2+b3.

Thus one can takea. ub2u as a less stringent condition for
s11d to be valid, while

a . 1.5ub2u, s13d

as the most general condition specified bys11d for
asymptotic stability of the synchronized stateD=0. The con-
dition s13d indeed corresponds to the stability condition for
exact anticipatory, identical, as well as lag synchronizations
for suitable values of the coupling delayt2. It may also be
noted that the stability conditions13d is independent of the
both the delay parameterst1 andt2. In the following, we will

FIG. 3. The first ten maximal Lyapunov exponentslmax of the
scalar time-delay equations3ad for the parameter valuesa=1.0, b
=1.2, tP s2,29d.
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demonstrate the transition from anticipatory to lag synchro-
nization via complete synchronization as the coupling delay
t2 is varied fromt2,t1 to t2.t1, subject to the stability
condition s13d with the parametric restrictionb1=b2+b3.
However, we also point out from detailed numerical analysis
that when the less general condition 1.5ub2u.a. ub2u is sat-
isfied, approximate synchronizationsanticipatory, complete,
lagd occurs.

III. ANTICIPATORY SYNCHRONIZATION FOR t2,t1

To start with, we first consider the transition to anticipa-
tory synchronization in the coupled systems3d. We have
fixed the value of the feedback time delayt1 at t1=25.0
while the other parameters are fixed asa=0.16,b1=0.2, b2
=0.1,b3=0.1 and the time delay in the couplingt2 is treated
as the control parameter. With the above mentioned stability
conditions13d and with the coupling delayt2 being less than
the feedback delayt1, one can observe the transition to an-
ticipatory synchronization. The time trajectory plot is shown
in Fig. 4sad depicting anticipatory synchronization, for the
specific value oft2=20.0 with the anticipating time equal to
the difference between feedback and coupling delays, that is,
t=t2−t1. The time-shifted plot Fig. 4sbd, x2st−td vs x1std,
shows a concentrated diagonal line confirming the existence
of anticipatory synchronizationswe may note here that in all
our numerical studies in this paper we leave out a sufficiently
large number of transients, before presenting our figuresd.

Some time ago, Rosenbulmet al. f15g have introduced the
notion of the similarity functionSlstd for characterizing the
lag synchronization as a time-averaged difference between
the variablesx1 andx2 swith mean values being subtractedd
taken with the time shiftt,

Sl
2std =

kfx2st + td − x1stdg2l
fkx1

2stdlkx2
2stdlg1/2 , s14d

wherekxl means the time average over the variablex. If the
signals x1std and x2std are independent, the difference be-
tween them is of the same order as the signals themselves. If

x1std=x2std, as in the case of complete synchronization, the
similarity function reaches a minimumSstd=0 for t=0. But
for the case of a nonzero value of time shiftt, if Slstd=0,
then there exists a time shiftt between the two signalsx1std
and x2std such thatx2st+td=x1std, demonstrating lag syn-
chronization.

In the present study, we have used the same similarity
function Slstd to characterize anticipatory synchronization
with a negative time shift −t instead of the positive time shift
t in Eq. s14d. In other words, one may define the similarity
function for anticipatory synchronization as

Sa
2std =

kfx2st − td − x1stdg2l
fkx1

2stdlkx2
2stdlg1/2 . s15d

Then a minimum ofSastd, that is, Sastd=0, indicates that
there exists a time shift −t between the two signalsx1std and
x2std such that x2st−td=x1std, demonstrating anticipatory
synchronization. Figure 5 shows the similarity functionSastd

FIG. 5. Similarity functionSastd for different values ofb2; the
other system parameters area=0.16,b1=0.2, andt1=25.0.sCurve
1, b2=0.18, b3=0.02; curve 2,b2=0.16, b3=0.04; curve 3,b2

=0.15,b3=0.05; curve 4,b2=0.1, b3=0.1.d

FIG. 4. Exact anticipatory synchronization for the parameter valuesa=0.16,b1=0.2, b2=0.1, b3=0.1, t1=25.0, andt2=20.0.sad Time
series plot ofx1std andx2std; sbd synchronization manifold betweenx1std andx2st−td, t=t2−t1. The responsex2std anticipates the drivex1std
with a time shift oft=5.0.
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as a function of the coupling delayt2 for four different val-
ues ofb2, the parameter whose value determines the stability
condition given by Eq.s13d, while satisfying the parametric
conditionb1=b2+b3. Curves 1 and 2 are plotted for the val-
ues of b2=0.18 s.a=0.16.a/1.5d and b2=0.16 s=a
.a/1.5d, respectively, where the minimum values ofSastd
are found to be greater than zero, indicating that there is no
exact time shift between the two signalsx1std andx2std. Note
that in the both cases the stringent stability conditions13d
and the less stringent conditiona. ub2u are violated. Curve 3
corresponds to the value ofb2=0.15swhich is less thana but
greater thana/1.5d, where the minimum value ofSastd is
almost zero, but not exactly zerosas may be seen in the inset
of Fig. 5d, indicating an approximate anticipatory synchroni-
zationx1std<x2st−td. On the other hand the curve 4 is plot-
ted for the value ofb2=0.1 s,a/1.5d, satisfying the general
stability criterion Eq.s13d. It shows that the minimum of
Sastd=0, thereby indicating that there exists an exact time
shift between the two signals demonstrating anticipatory syn-
chronization. The anticipating time is found to be equal to
the difference between the coupling and feedback delay
times, that is,t=t2−t1. Note thatSastd=0 for all values of
t2,t1, indicating anticipatory synchronization for a range of
delay coupling. A further significance is that the anticipating
time t= ut2−t1u is an adjustable quantity as long ast2,t1,

which can be tuned suitably to satisfy experimental situa-
tions.

Next, we show that the emergence of exact anticipatory
synchronization is preceded by a region of approximate an-
ticipatory synchronization, which is associated with the tran-
sition from on-off intermittency to a periodic structure in the
laminar phase distributionf19g as a function of the parameter
b2. First we choose the value ofb2 as b2=0.17 swith b1
=0.2 andb3=0.03d, above the value ofa=0.16, such that the
general stability criterion Eq.s13d as well as the less strin-
gent conditiona. ub2u are violated. Figure 6sad shows the
difference ofx1std−x2st−td vs t, exhibiting typical features
of on-off intermittencyf42,43g with the “off” state near the
laminar phase and the “on” state showing a random burst. In
Fig. 6sbd x1std is plotted againstx2st−td, where the distribu-
tion is scattered around the diagonal. To analyze the statisti-
cal features associated with the irregular motion, we calcu-
lated the distribution of laminar phasesLstd with amplitude
less than a threshold valueD=0.005 as was done in the sta-
tistical analysis of intermittencyf42,43g, where the power
law behavior of the mean laminar length is calculated as a
function of the control parameter. A universal asymptotic
−3/2 power law distribution is observed in Fig. 6scd, which
is quite typical for on-off intermittency.

Now, we choose the value ofb2=0.15, below the value of
a=0.16 so that the less stringent conditiona. ub2u is satisfied

FIG. 6. sad The time seriesx1std−x2st−td for b2=0.17 andb3=0.03 with all other parameters as in Fig. 4sso that the stability condition
is violated for anticipatory synchronizationd. sbd Projection ofx1std vs x2st−td. scd The statistical distribution of the laminar phase satisfying
−3/2 power law scaling.
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while the general stability criterion Eq.s13d is violated and
we carry out the same analysis as above. In Fig. 7sad, the
difference ofx1std−x2st−td is plotted against timet, which is
more regular and is much smaller in amplitude but not ex-
actly zero, thereby implying an approximate anticipatory
synchronizationx1std<x1st−td. Figure 7sbd shows the plot
of x1std vs x2st−td, where the distribution is localized en-
tirely on the diagonal, but not sharply on it. Earlier we noted
that for this case the minimum of the similarity function
Sastd scurve 3, inset of Fig. 5d is nearly zero, but not exactly
zero. The distribution of the laminar phaseLstd is plotted in
Fig. 7scd as in Fig. 6scd. It shows a periodic structure in the
distribution of the laminar phase, where the peaks occur ap-
proximately att=nT, n=1,2, . . .,whereT is of the order of
the period of the lowest periodic orbit of the uncoupled sys-
tem s1d. It should be remembered that the periodic behavior
is associated with the statistical analysis, while the signals
remain chaotic. Finally for the caseb2=0.1 s,a/1.5d, which
satisfies the stringent stability criterions13d, and where the
similarity function vanishes exactlyscurve 4 in Fig. 5d, exact
anticipatory synchronization occurs as confirmed in Fig. 4.
Thus we find that the transition to exact anticipatory syn-
chronization precedes a region of approximate anticipatory
synchronization from the desynchronized state as the param-
eter b2 changes. We have also demonstrated that the emer-

gence of this approximate anticipatory synchronization from
the desynchronized state is characterized by the transition of
on-off intermittency to a periodic structure in the laminar
phase distribution.

IV. COMPLETE SYNCHRONIZATION FOR t2=t1

Complete synchronization follows anticipatory synchroni-
zation as the value of the coupling time delayt2 becomes
equal to the feedback time delayt1, when t2 is increased
from a lower value. Witht2=t1, the same stability criterion
Eq. s13d holds good for this case of complete synchroniza-
tion as well, with the same conditionb1=b2+b3. Figure 8sad
shows the time trajectory plot ofx1std and x2std, exhibiting
synchronized evolution between them, which is also con-
firmed by the entirely localized diagonal line ofx1std vs x2std
as shown in Fig. 8sbd. As in the case of anticipatory synchro-
nization, we have found that the transition to complete syn-
chronization precedes a region of approximate complete syn-
chronizationfx1std<x2stdg from the desynchronized state as
the parameterb2 varies. Here also we have identified that the
emergence of approximate complete synchronization for the
caset2=t1 is associated with a transition from on-off inter-
mittency to a periodic structure in the laminar phase distri-
bution as a function of the parameterb2. In the next section

FIG. 7. sad The time seriesx1std−x2st−td for b2=0.15 andb3=0.05 with all other parameters fixed as in Fig. 4fso that the less stringent
conditiona. ub2u is satisfied while Eq.s13d is violatedg. sbd Projection ofx1std vs x2st−td. scd The statistical distribution of the laminar phase
showing a periodic structure.
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we will discuss the existence of lag synchronization for val-
ues oft2 greater thant1.

V. LAG SYNCHRONIZATION FOR t2.t1

For coupling delayt2 greater than feedback delayt1, we
find that the systems3d exhibits exact lag synchronization
provided one satisfies the stringent stability criterions13d,
with the lag time equal to the difference between the cou-
pling and feedback delay times. Figure 9sad shows the plot of
x1std andx2std vs time t, where the response system lags the
state of the drive system with constant lag timet= ut2−t1u.
Figure 9sbd shows the time-shifted plot ofx1std andx2st+td.
However, in the region of less stringent stability condition,
1.5ub2u,a, ub2u, approximate lag synchronization occurs as
in the cases of anticipatory and complete synchronizations.

We have also calculated the similarity functionSlstd from
Eq. s14d to characterize the lag synchronization. Figure 10
shows the similarity functionSlstd vs coupling delayt2 for
four different values ofb2. Curves 1 and 2 show the similar-

ity function Slstd for the values ofb2=0.18 and 0.16, respec-
tively. The minimum of the similarity functionSlstd occurs
for values ofSlstd.0 and hence there is a lack of exact lag
time between the drive and response signals indicating asyn-
chronization. Curve 3 corresponds to the value ofb2=0.15
swhich is less thana but greater thana/1.5d, where the mini-
mum values ofSlstd is almost zero, but not exactly zerosas
may be seen in the inset of Fig. 10d, so thatx1std<x2st+td.
However, for the value ofb3=0.1, for which the general
condition s13d is satisfied, the minimum of the similarity
function becomes exactly zeroscurve 4d indicating that there
is an exact time shiftsFig. 9d between drive and response
signalsx1std and x2std, respectively, confirming the occur-
rence of lag synchronization.

We have also confirmed that as in the case of anticipatory
synchronization, when the parameterb2 varies, the onset of
exact lag synchronization is preceded by a region of approxi-
mate lag synchronization, which is characterized by a transi-
tion from on-off intermittency of the desynchronized state to
a periodic structure in the laminar phase distribution. For the
value ofb2=0.17fwhich violates the stability conditions13d

FIG. 8. Exact complete synchronization for the parameter valuesa=0.16, b1=0.2, b2=0.1, b3=0.1, t1=25.0, andt2=25.0. Here the
general stability criterions13d is satisfied.sad Time series plot ofx1std andx2std and sbd synchronization manifold betweenx1std andx2std.
The responsex2std follows identically the drivex1std without any time shift.

FIG. 9. Exact lag synchronization for the parameter valuesa=0.16,b1=0.2, b2=0.1, b3=0.1, t1=25.0, andt2=30.0. Here the general
stability criterions13d is satisfied.sad Time series plot ofx1std andx2std, andsbd synchronization manifold betweenx1std andx2st+td. The
responsex2std lags the drivex1std with a time shift oft=5.0.
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as well as the less stringent conditiona. ub2ug, Fig. 11sad
shows the difference ofx1std−x2st+td vs timet, exhibiting a
typical on-off intermittency. In Fig. 11sbd, x1std is plotted
againstx2st+td, where the distribution is not concentrated
along the diagonal. In Fig. 11sad, the laminar phase distribu-
tion Lstd is characterized by an exponential −3/2 power law

behavior as shown in Fig. 11scd. In order to show that there
is a transition from on-off intermittency to periodic behavior
in the laminar phase distribution corresponding to approxi-
mate lag synchronization, we have changed the value ofb2
from 0.17 to 0.15fso that the less stringent conditiona
. ub2u is satisfied but not the general conditions13dg, and
examined the nature of laminar phase distributionLstd. The
difference betweenx1std andx2st+td is shown as a function
of time t in Fig. 12sad, where there is only a laminar phase
present for the threshold valueD=0.002 without any inter-
mittent burst. The corresponding laminar phase distribution
Lstd is again characterized by a periodic structure as shown
in Fig. 12scd. As in the case of approximate anticipatory
synchronization, here also the peaks occur approximately at
t=nT, n=1,2, . . ., where T is roughly of the order of the
period of the lowest periodic orbit of the uncoupled system
s1d. The time-shifted plotx1std vs x2st+td is shown in Fig.
12sbd, where the distribution is concentrated along but not
exactly on the diagonal line confirming the onset of approxi-
mate lag synchronization. As noted previously, for this case
the minimum of the similarity functionSlstd is nearly zero
but not exactly zeroscurve 3, inset of Fig. 10d. Finally for
b2=0.1, which satisfies the general stability criterions13d,
we have exact lag synchronization as demonstrated in Figs. 9
and 10. Thus we find that as the parameterb2 varies the
transition to exact lag synchronization is preceded by a re-

FIG. 10. Similarity functionSlstd for different values ofb2; the
other system parameters area=0.16,b1=0.2, andt1=25.0. scurve
1, b2=0.18, b3=0.02; curve 2,b2=0.16, b3=0.04; curve 3,b2

=0.15,b3=0.05; and curve 4,b2=0.1, b3=0.1.d

FIG. 11. sad The time seriesx1std−x2st+td for b2=0.17 andb3=0.03 with all other parameters as in Fig. 9sso that the stability condition
is violatedd. sbd Projection ofx1std vs x2st+td. scd The statistical distribution of laminar phase satisfying −3/2 power law scaling.
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gion of approximate lag synchronization from the desynchro-
nized state, where the latter is characterized by the transition
from on-off intermittency to periodic structure in the laminar
phase distribution.

VI. SUMMARY AND CONCLUSION

In this paper, we have shown the existence of transition
from anticipatory synchronization to lag synchronization
through complete synchronization in a single system of two
coupled time-delay piecewise-linear oscillators with suitable
stability condition and with the second time delayt2 in the
coupling as the only control parameter with all the other
parameters being kept fixed. We have also plotted corre-
sponding similarity functions to characterize both the antici-
patory and lag synchronization as well as complete synchro-
nization. Further, when the parameterb2 varies, we find that
the transition to exact anticipatory, complete, or lag synchro-
nization is preceded by a region of approximate anticipatory,
complete, or lag synchronization from the desynchronized
state, where the region of approximate synchronization is
characterized by the transition from on-off intermittency to
periodic structure in the laminar phase distribution.

Further, we have observed that in the region where the
stringent stability conditions13d is satisfied, the minimum of

the similarity functionSastd attains the value zero for all
values oft2,t1, indicating that exact anticipatory synchro-
nization exists for a range of coupling delayst2 below t1.
However, for approximate anticipatory synchronizationsin
the region 1.5ub2u.a. ub2ud the minimum of the similarity
function takes the valueSastd<0, but not exactly zero, for
t2,t1. Similarly, lag synchronization also occurs for a range
of delay couplingst2 abovet1. Another interesting aspect is
that both the anticipating and lag time can be tuned to any
desired value by changing the value of the coupling delayt2.
Consequently, coupled time-delay systems of the type dis-
cussed in this paper have considerable physical relevance,
particularly for secure communication purposes. We are now
investigating the existence of similar phenomena in other
piecewise-linear time-delay systems, including the time-
delay Chua and Murali-Lakshman-Chua electronic circuits,
the results of which will be published elsewhere.
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FIG. 12. sad The time seriesx1std−x2st+td for b2=0.15 andb3=0.05 so that the less stringent conditiona. ub2u is satisfied whiles13d is
violated.sbd Projection ofx1std vs x2st+td. scd The statistical distribution of the laminar phase showing periodic structure.
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